International Debate

A Few Caveats for Budding Social Media Research Mavens

December 4, 2014 1514

Social media iconsBehavioral scientists have seized on social media and their massive data sets as a way to quickly and cheaply figure out what people are thinking and doing. But some of those tweets and thumbs ups can be misleading. Researchers must figure out how to make sure their forecasts and analyses actually represent the offline world.

Big Data’s overwhelming appeal

Imagine you’re interested in analyzing society to learn the answers to questions like: how bad is the flu this year? How will people vote in an upcoming election? How do people talk about and cope with diabetes? You could interview people on the street or call them on their phones. That’s what traditional polling firms do – but it takes time and can be quite costly. A promising alternative involves collecting and analyzing social media data – quickly and for free.

The Conversation logo

This article by Jürgen Pfeffer and Derek Ruths originally appeared at The Conversation, a Social Science Space partner site, under the title “Studying society via social media is not so simple”

Hundreds of millions of people use social media platforms like Facebook and Twitter every day. Individually, they create traces of their activities when they tweet, like and friend each other. Collectively, these users have produced massive, real-time streams of data that offer minute-by-minute updates on social trends – where people are, what people are doing and what they are thinking about. For the last several years, researchers in academia and industry have been developing ways to utilize this flood of data in their investigations and have published thousands of papers drawing on it.

A typical Twitter study could look like the following. Imagine you’re interested in information diffusion after a tragic event. The moment you hear about such an event – for instance, the Boston Marathon bombing – you activate software on your computer that collects in real time Tweets that contain your keywords of interest – maybe Boston in this case. Since there are no Twitter archives available for researchers, you’d utilize Twitter’s data interface and collect all data that come for free. After a couple of hours or days you stop the data collection and start with the analysis.

What to watch out for

Not surprisingly, this effort to measure and predict human behavior from social media data is fraught with pitfalls – both obvious and very subtle. For instance, we know that different social media platforms are preferred by different demographic groups. However, most social media studies don’t carefully account for the fact that Twitter is used mostly in cities or that most Pinterest users are upper middle-class and female. This oversight can introduce serious errors into predictions and measurements.

Many of the “individuals” that populate social media platforms are actually accounts managed by public relations companies (think Justin Bieber or Nike) or not even humans at all but automated robots. Because these accounts aren’t portraying anything that even approximates normal human behavior, studies need to remove such accounts before making predictions. However, finding robot accounts can be quite hard.

Another big issue is how the data are collected to be studied. Academic researchers need free – or at least very cheap – access to social media data to perform their studies. Few social media outlets provide this, with Twitter being the exception. Because social media studies tend to be often based on data that are sampled (researchers get about 1 percent from the free Twitter interface), it’s often the case that what’s available to researchers might not be a representative sample of the overall social media data.

How to do it better

In order to realize the immense potential of social media-based studies of human populations, research must tackle these kinds of issues head-on. In our recent paper in Science on caveats for social media researchers, we discuss the need to control for bias in all the ways it appears – through platform-specific population makeup, data collection and user sampling. This will involve improvements both in how data is collected and in how data is processed: for example, better methods for identifying non-human accounts on social media are needed.

Ultimately, researchers must be more aware of what is being analyzed when they work with social media data. What data are actually being collected? What systems are actually being studied? What social processes are actually being observed? Through greater awareness of and attention to these questions, the research community will be better able to realize the great promise of social media-based studies.The Conversation

***

Jürgen Pfeffer receives funding from NSF, DOD. Derek Ruths receives funding from SSHRC, NSERC, NSF, Public Safety Canada. He consults for Facebook.


Jürgen Pfeffer is an assistant research professor of computation, organizations and society at the School of Computer Science at Carnegie Mellon University. Derek Ruths is an assistant professor of computer science at McGill University.

View all posts by Jürgen Pfeffer and Derek Ruths

Related Articles

Pope Francis, Human Dignity, and the Right to Stay, Migrate and Return
International Debate
May 5, 2025

Pope Francis, Human Dignity, and the Right to Stay, Migrate and Return

Read Now
From Regression to Reflection: A Mixed-Methods Journey
Research
April 28, 2025

From Regression to Reflection: A Mixed-Methods Journey

Read Now
Ready to Tackle Global Challenges? Apply to Attend Dubai Showcase
Infrastructure
April 17, 2025

Ready to Tackle Global Challenges? Apply to Attend Dubai Showcase

Read Now
DORA to Launch Practical Guide to Responsible Research Assessment
Resources
April 15, 2025

DORA to Launch Practical Guide to Responsible Research Assessment

Read Now
The Academy and the Authoritarian: Stories from the 20th Century

The Academy and the Authoritarian: Stories from the 20th Century

Many American universities, widely seen globally as beacons of academic integrity and free speech, are giving in to demands from the Trump […]

Read Now
How Can You Serve the Globe’s People If You Don’t Know How Many There Are?

How Can You Serve the Globe’s People If You Don’t Know How Many There Are?

Every day, decisions that affect our lives depend on knowing how many people live where. For example, how many vaccines are needed […]

Read Now
The End of the Free Trade Era?

The End of the Free Trade Era?

On April 2, United States President Donald Trump declared “liberation day,” unveiling a new tariff (tax on imported goods) regime that targets […]

Read Now
0 0 votes
Article Rating
Subscribe
Notify of
guest


This site uses Akismet to reduce spam. Learn how your comment data is processed.

1 Comment
Newest
Oldest Most Voted
Inline Feedbacks
View all comments